IRSF-Funded Publications

Publications that directly benefitted from research funding provided by IRSF. We proudly support pioneering research seeking to expand our fundamental knowledge and develop treatments and cures.

Precise in vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA

Reautschnig, P., Fruhner, C., Wahn, N., Wiegand, C. P., Kragness, S., Yung, J. F., Hofacker, D. T., Fisk, J., Eidelman, M., Waffenschmidt, N., Feige, M., Pfeiffer, L. S., Schulz, A. E., Füll, Y., Levanon, E. Y., Mandel, G., & Stafforst, T. (2024). Precise in vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA. Nature biotechnology, 10.1038/s41587-024-02313-0. Advance online publication. https://doi.org/10.1038/s41587-024-02313-0

Potentiation of the muscarinic acetylcholine receptor 1 modulates neurophysiological features in a mouse model of Rett syndrome

Dong, H. W., Weiss, K., Baugh, K., Meadows, M. J., Niswender, C. M., & Neul, J. L. (2024). Potentiation of the muscarinic acetylcholine receptor 1 modulates neurophysiological features in a mouse model of Rett syndrome. Neurotherapeutics : The Journal of the American Society for Experimental NeuroTherapeutics, 21(4), e00384. https://doi.org/10.1016/j.neurot.2024.e00384

Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome

Merritt, J. K., Fang, X., Caylor, R. C., Skinner, S. A., Friez, M. J., Percy, A. K., & Neul, J. L. (2024). Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome. Genes, 15(5), 594. https://doi.org/10.3390/genes15050594

MECP2 directly interacts with RNA polymerase II to modulate transcription in human neurons

Liu, Y., Flamier, A., Bell, G. W., Diao, A. J., Whitfield, T. W., Wang, H. C., Wu, Y., Schulte, F., Friesen, M., Guo, R., Mitalipova, M., Liu, X. S., Vos, S. M., Young, R. A., & Jaenisch, R. (2024). MECP2 directly interacts with RNA polymerase II to modulate transcription in human neurons. Neuron, 112(12), 1943–1958.e10. https://doi.org/10.1016/j.neuron.2024.04.007

Potentiation of the M 1 muscarinic acetylcholine receptor normalizes neuronal activation patterns and improves apnea severity in Mecp2+/- mice

Smith, M., Dodis, G. E., Vanderplow, A. M., Gonzalez, S., Rhee, Y., & Gogliotti, R. G. (2024). Potentiation of the M 1 muscarinic acetylcholine receptor normalizes neuronal activation patterns and improves apnea severity in Mecp2+/- mice. bioRxiv : The Preprint Server for Biology, 2024.04.15.586099. https://doi.org/10.1101/2024.04.15.586099

Sensory experiences questionnaire unravels differences in sensory profiles between MECP2-related disorders

Suter, B., Pehlivan, D., Ak, M., Harris, H. K., & Lyons-Warren, A. M. (2024). Sensory experiences questionnaire unravels differences in sensory profiles between MECP2-related disorders. Autism Research : Official Journal of the International Society for Autism Research, 17(4), 775–784. https://doi.org/10.1002/aur.3112

MECP2-related disorders while gene-based therapies are on the horizon

Allison, K., Maletic-Savatic, M., & Pehlivan, D. (2024). MECP2-related disorders while gene-based therapies are on the horizon. Frontiers in Genetics, 15, 1332469. https://doi.org/10.3389/fgene.2024.1332469

Development and validation of parent-reported gastrointestinal health scale in MECP2 duplication syndrome

Pehlivan, D., Aras, S., Glaze, D. G., Ak, M., Suter, B., & Motil, K. J. (2024). Development and validation of parent-reported gastrointestinal health scale in MECP2 duplication syndrome. Orphanet Journal of Rare Diseases, 19(1), 52. https://doi.org/10.1186/s13023-024-03022-2

Reversal of neurological deficits by painless nerve growth factor in a mouse model of Rett syndrome

Tiberi, A., Borgonovo, G., Testa, G., Pacifico, P., Jacob, A., Di Caprio, M., Totaro, V., Calvello, M., Cattaneo, A., & Capsoni, S. (2024). Reversal of neurological deficits by painless nerve growth factor in a mouse model of Rett syndrome. Brain : A Journal of Neurology, 147(1), 122–134. https://doi.org/10.1093/brain/awad282

Ayres Sensory Integration Therapy for a Child With Rett Syndrome: A Case Report

Rocco, K., Drobnyk, W., Bruce, S., & Soumerai, S. B. (2023). Ayres Sensory Integration Therapy for a Child With Rett Syndrome: A Case Report. Clinical Medicine Insights. Pediatrics, 17, 11795565231188939. https://doi.org/10.1177/11795565231188939

Trofinetide: a pioneering treatment for Rett syndrome

Parent, H., Ferranti, A., & Niswender, C. (2023). Trofinetide: a pioneering treatment for Rett syndrome. Trends in Pharmacological Sciences, 44(10), 740–741. https://doi.org/10.1016/j.tips.2023.06.008

Differential dynamics specify MeCP2 function at methylated DNA and nucleosomes

Chua, G. N. L., Watters, J. W., Olinares, P. D. B., Begum, M., Vostal, L. E., Luo, J. A., Chait, B. T., & Liu, S. (2024). Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nature Structural & Molecular Biology, 10.1038/s41594-024-01373-9. Advance online publication. https://doi.org/10.1038/s41594-024-01373-9

Rett Syndrome Behaviour Questionnaire in Children and Adults With Rett Syndrome: Psychometric Characterization and Revised Factor Structure

Oberman, L. M., Leonard, H., Downs, J., Cianfaglione, R., Stahlhut, M., Larsen, J. L., Madden, K. V., & Kaufmann, W. E. (2023). Rett Syndrome Behaviour Questionnaire in Children and Adults With Rett Syndrome: Psychometric Characterization and Revised Factor Structure. American Journal on Intellectual and Developmental Disabilities, 128(3), 237–253. https://doi.org/10.1352/1944-7558-128.3.237

Exploring gastrointestinal health in MECP2 duplication syndrome

Pehlivan, D., Ak, M., Glaze, D. G., Suter, B., & Motil, K. J. (2023). Exploring gastrointestinal health in MECP2 duplication syndrome. Neurogastroenterology and Motility, 35(8), e14601. https://doi.org/10.1111/nmo.14601

Rett syndrome behaviour questionnaire in children and adults with Rett syndrome: psychometric characterization and revised factor structure

Oberman L., Leonard H., Downs J., Cianfaglione R., Stahlhut M., Larsen J., Madden K., & Kaufmann W. (2023) Rett syndrome behaviour questionnaire in children and adults with Rett syndrome: psychometric characterization and revised factor structure. American Journal on Intellectual and Developmental Disabilities, 128 (3): 237–253. https://doi.org/10.1352/1944-7558-128.3.237

Genotype and sleep independently predict mental health in Rett syndrome: an observational study

Kay, C., Leonard, H., Smith, J., Wong, K., & Downs, J. (2023). Genotype and sleep independently predict mental health in Rett syndrome: an observational study. Journal of Medical Genetics, 60(10), 951–959. https://doi.org/10.1136/jmg-2022-108905

Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome

Mykins, M., Layo-Carris, D., Dunn, L. R., Skinner, D. W., McBryar, A. H., Perez, S., Shultz, T. R., Willems, A., Lau, B. Y. B., Hong, T., & Krishnan, K. (2023). Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome. Journal of Neuroscience Research, 101(8), 1236–1258. https://doi.org/10.1002/jnr.25190

Top caregiver concerns in Rett syndrome and related disorders: data from the US natural history study

Neul, J. L., Benke, T. A., Marsh, E. D., Suter, B., Silveira, L., Fu, C., Peters, S. U., Percy, A. K., & Rett syndrome Natural History Study Group (2023). Top caregiver concerns in Rett syndrome and related disorders: data from the US natural history study. Journal of Neurodevelopmental Disorders, 15(1), 33. https://doi.org/10.1186/s11689-023-09502-z

Individualized Remotely Supervised Motor Activity Programs Promote Rehabilitation Goal Achievement, Motor Functioning, and Physical Activity of People with Rett Syndrome-A Single-Cohort Study

Romano, A., Ippolito, E., Favetta, M., Lotan, M., & Moran, D. S. (2022). Individualized Remotely Supervised Motor Activity Programs Promote Rehabilitation Goal Achievement, Motor Functioning, and Physical Activity of People with Rett Syndrome-A Single-Cohort Study. International Journal of Environmental Research and Public Health, 20(1), 659. https://doi.org/10.3390/ijerph20010659

Long-term cortical plasticity following sensory deprivation is reduced in male Rett model mice

Farhoomand, F., & Delaney, K. R. (2023). Long-term cortical plasticity following sensory deprivation is reduced in male Rett model mice. Somatosensory & Motor Research, 40(4), 133–140. https://doi.org/10.1080/08990220.2022.2158799

Can telehealth increase physical activity in individuals with Rett syndrome? A multicentre randomized controlled trial

Downs, J., Blackmore, A. M., Wong, K., Buckley, N., Lotan, M., Elefant, C., Leonard, H., & Stahlhut, M. (2023). Can telehealth increase physical activity in individuals with Rett syndrome? A multicentre randomized controlled trial. Developmental Medicine and Child Neurology, 65(4), 489–497. https://doi.org/10.1111/dmcn.15436

State-of-the-art therapies for Rett syndrome

Panayotis, N., Ehinger, Y., Felix, M. S., & Roux, J. C. (2023). State-of-the-art therapies for Rett syndrome. Developmental Medicine and Child Neurology, 65(2), 162–170. https://doi.org/10.1111/dmcn.15383

Exploring the characteristics and most bothersome symptoms in MECP2 duplication syndrome to pave the path toward developing parent-oriented outcome measures

Ak, M., Suter, B., Akturk, Z., Harris, H., Bowyer, K., Mignon, L., Pasupuleti, S., Glaze, D. G., & Pehlivan, D. (2022). Exploring the characteristics and most bothersome symptoms in MECP2 duplication syndrome to pave the path toward developing parent-oriented outcome measures. Molecular Genetics & Genomic Medicine, 00, e1989. https://doi.org/10.1002/mgg3.1989

Human brain models of intellectual disability: experimental advances and novelties

Merckx, N.L.L., & Esch, H.V. (2022). Human brain models of intellectual disability: experimental advances and novelties. International Journal of Molecular Sciences, 2022, 23, 6476. https://doi.org/10.3390/ijms23126476

Clinical and Preclinical Evidence for M(1) Muscarinic Acetylcholine Receptor Potentiation as a Therapeutic Approach for Rett Syndrome

Smith, M., Arthur, B., Cikowski, J., Holt, C., Gonzalez, S., Fisher, N. M., Vermudez, S. A. D., Lindsley, C. W., Niswender, C. M., & Gogliotti, R. G. (2022). Clinical and Preclinical Evidence for M1 Muscarinic Acetylcholine Receptor Potentiation as a Therapeutic Approach for Rett Syndrome. Neurotherapeutics : The Journal of the American Society for Experimental NeuroTherapeutics, 19(4), 1340–1352. https://doi.org/10.1007/s13311-022-01254-3

Assessing the Burden on Caregivers of MECP2 Duplication Syndrome

Ak, M., Akturk, Z., Bowyer, K., Mignon, L., Pasupuleti, S., Glaze, D. G., Suter, B., & Pehlivan, D. (2022). Assessing the Burden on Caregivers of MECP2 Duplication Syndrome. Pediatric Neurology, 133, 1–8. https://doi.org/10.1016/j.pediatrneurol.2022.05.008

Anxiety-like behavior and anxiolytic treatment in the Rett syndrome natural history study

Buchanan, C., Stallworth, J., Joy A., Dixon, R., Scott, A., Beisang, A., Benke, T., Glaze, D., Haas, R., Heydemann, P., Jones, M., Lane, J., Lieberman ,D., Marsh, E., Neul, J., Peters, S., Ryther, R., Skinner, S., Standridge S., Kaufmann, W., & Percy, A. (2022). Anxiety-like behavior and anxiolytic treatment in the Rett syndrome natural history study. Journal of Neurodevelopmental Disorders, 14(1), 31. https://doi.org/10.1186/s11689-022-09432-2

Vitamin D modulates cortical transcriptome and behavioral phenotypes in an Mecp2 heterozygous Rett syndrome mouse model

Ribeiro, M., & MacDonald, J. (2022). Vitamin D modulates cortical transcriptome and behavioral phenotypes in an Mecp2 heterozygous Rett syndrome mouse model. Neurobiology of Disease, 165, 105636. https://doi.org/10.1016/j.nbd.2022.105636

Enablers and barriers in dental attendance in Rett syndrome: an international observational study

Lai, Y. Y. L., Downs, J. A., Wong, K., Zafar, S., Walsh, L. J., & Leonard, H. M. (2022). Enablers and barriers in dental attendance in Rett syndrome: an international observational study. Special Care in Dentistry : Official Publication of the American Association of Hospital Dentists, the Academy of Dentistry for the Handicapped, and the American Society for Geriatric Dentistry, 42(6), 565–574. https://doi.org/10.1111/scd.12712

Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome

Grimm, N. B., & Lee, J. T. (2022). Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends in Genetics : TIG, 38(9), 920–943. https://doi.org/10.1016/j.tig.2022.01.007

Vitamin D modulates cortical transcriptome and behavioral phenotypes in an Mecp2 heterozygous Rett syndrome mouse model

Ribeiro, M. C., & MacDonald, J. L. (2022). Vitamin D modulates cortical transcriptome and behavioral phenotypes in an Mecp2 heterozygous Rett syndrome mouse model. Neurobiology of Disease, 165, 105636. Advance online publication. https://doi.org/10.1016/j.nbd.2022.105636

Intensive postural and motor activity program reduces scoliosis progression in people with Rett syndrome

Romano, A., Ippolito, E., Risoli, C., Malerba, E., Favetta, M., Sancesario, A., Lotan, M., & Moran, D. S. (2022). Intensive postural and motor activity program reduces scoliosis progression in people with Rett syndrome. Journal of Clinical Medicine, 11(3), 559. https://doi.org/10.3390/jcm11030559

CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo

Reautschnig, P., Wahn, N., Wettengel, J., Schulz, A. E., Latifi, N., Vogel, P., Kang, T. W., Pfeiffer, L. S., Zarges, C., Naumann, U., Zender, L., Li, J. B., & Stafforst, T. (2022). CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nature Biotechnology, 40(5), 759–768. https://doi.org/10.1038/s41587-021-01105-0

Molecular and clinical insights into complex genomic rearrangements related to MECP2 duplication syndrome

Abdala, B. B., Gonçalves, A. P., Dos Santos, J. M., Boy, R., de Carvalho, C., Grochowski, C. M., Krepischi, A., Rosenberg, C., Gusmão, L., Pehlivan, D., Pimentel, M., & Santos-Rebouças, C. B. (2021). Molecular and clinical insights into complex genomic rearrangements related to MECP2 duplication syndrome. European Journal of Medical Genetics, 64(12), 104367. https://doi.org/10.1016/j.ejmg.2021.104367

Engineered microRNA-based regulatory element permits safe high-dose miniMECP2 gene therapy in Rett mice

Sinnett, S. E., Boyle, E., Lyons, C., & Gray, S. J. (2021). Engineered microRNA-based regulatory element permits safe high-dose miniMECP2 gene therapy in Rett mice. Brain : a journal of neurology, 144(10), 3005–3019. https://doi.org/10.1093/brain/awab182

Rett syndrome and Fragile X syndrome: different etiology with common molecular dysfunctions

Bach, S., Shovlin, S., Moriarty, M., Bardoni, B., & Tropea, D. (2021). Rett syndrome and Fragile X syndrome: different etiology with common molecular dysfunctions. Frontiers in cellular neuroscience, 15, 764761. https://doi.org/10.3389/fncel.2021.764761

Parent and therapist perspectives on “uptime” activities and participation in Rett syndrome

Buckley, N., Stahlhut, M., Elefant, C., Leonard, H., Lotan, M., & Downs, J. (2022). Parent and therapist perspectives on “uptime” activities and participation in Rett syndrome. Disability and rehabilitation, 44(24), 7420–7427. https://doi.org/10.1080/09638288.2021.1992026

Molecular and clinical insights into complex genomic rearrangements related to MECP2 duplication syndrome

Abdala, B. B., Gonçalves, A. P., Dos Santos, J. M., Boy, R., de Carvalho, C., Grochowski, C. M., Krepischi, A., Rosenberg, C., Gusmão, L., Pehlivan, D., Pimentel, M., & Santos-Rebouças, C. B. (2021). Molecular and clinical insights into complex genomic rearrangements related to MECP2 duplication syndrome. European Journal of Medical Genetics, 64(12), 104367. https://doi.org/10.1016/j.ejmg.2021.104367

Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome

Marballi, K., & MacDonald, J. (2021). Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochemistry International, 148. https://doi.org/10.1016/j.neuint.2021.105076

Effects of a remotely supervised motor rehabilitation program for individuals with Rett syndrome at home

Romano, A., Di Rosa, G., Tisano, A., Fabio, R. A., & Lotan, M. (2021). Effects of a remotely supervised motor rehabilitation program for individuals with Rett syndrome at home. Disability and Rehabilitation, 44(20), 5898–5908. https://doi.org/10.1080/09638288.2021.1949398

Oral parafunction and bruxism in Rett syndrome and associated factors: An observational study

Lai, Y. Y. L., Downs, J. A., Wong, K., Zafar, S., Walsh, L. J., & Leonard, H. M. (2023). Oral parafunction and bruxism in Rett syndrome and associated factors: An observational study. Oral Diseases, 29(1), 220–231. https://doi.org/10.1111/odi.13924

Systematic analysis of goal-related movement sequences during maternal behaviour in a female mouse model for Rett syndrome

Stevenson, P. K., Casenhiser, D. M., Lau, B. Y. B., & Krishnan, K. (2021). Systematic analysis of goal-related movement sequences during maternal behaviour in a female mouse model for Rett syndrome. The European Journal of Neuroscience, 54(2), 4528–4549. https://doi.org/10.1111/ejn.15327

Measures of attention in Rett syndrome: Internal consistency reliability

Rose, S. A., Wass, S. V., Jankowski, J. J., & Djukic, A. (2021). Measures of attention in Rett syndrome: Internal consistency reliability. Neuropsychology, 35(6), 595–608. https://doi.org/10.1037/neu0000744

Profiling beneficial and potential adverse effects of MeCP2 overexpression in a hypomorphic Rett syndrome mouse model

Vermudez, S., Gogliotti, R., Arthur, B., Buch, A., Morales, C., Moxley ,Y., Rajpal, H., Conn, P., & Niswender, C. (2021). Profiling beneficial and potential adverse effects of MeCP2 overexpression in a hypomorphic Rett syndrome mouse model. Genes, Brain, and Behavior, 21(1), e12752. https://doi.org/10.1111/gbb.12752

Systematic analysis of goal-related movement sequences during maternal behaviour in a female mouse model for Rett syndrome

Stevenson, P., Casenhiser, D., Lau, B., & Krishnan, K. (2021). Systematic analysis of goal-related movement sequences during maternal behaviour in a female mouse model for Rett syndrome. European Journal of Neuroscience, 54(2): 4528-4549. https://doi.org/10.1111/ejn.15327

Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome

Marballi, K., & MacDonald, J. (2021). Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochemistry International, 148, 105076. https://doi.org/10.1016/j.neuint.2021.105076

Assessment of the gut bacterial microbiome and metabolome of girls and women with Rett Syndrome

Thapa, S., Venkatachalam, A., Khan, N., Naqvi, M., Balderas, M., Runge, J. K., Haag, A., Hoch, K. M., Glaze, D. G., Luna, R. A., & Motil, K. J. (2021). Assessment of the gut bacterial microbiome and metabolome of girls and women with Rett Syndrome. PLoS ONE 16(5): e0251231. https://doi.org/10.1371/journal.pone.0251231

Engineered microRNA-based regulatory element permits safe high-dose miniMECP2 gene therapy in Rett mice

Sinnett, S., Boyle, E., Lyons, C., & Gray, S. (2021). Engineered microRNA-based regulatory element permits safe high-dose miniMECP2 gene therapy in Rett mice. Brain,144(10), 3005-3019. https://doi.org/10.1093/brain/awab182

Multisite Study of Evoked Potentials in Rett Syndrome

Saby, J. N., Benke, T. A., Peters, S. U., Standridge, S. M., Matsuzaki, J., Cutri-French, C., Swanson, L. C., Lieberman, D. N., Key, A. P., Percy, A. K., Neul, J. L., Nelson, C. A., Roberts, T. P. L., & Marsh, E. D. (2021). Multisite Study of Evoked Potentials in Rett Syndrome. Annals of Neurology, 89(4), 790–802. https://doi.org/10.1002/ana.26029

Severe offtarget effects following intravenous delivery of AAV9-MECP2 in a female mouse model of Rett syndrome

Matagne, V., Borloz, E., Ehinger, Y., Saidi, L., Villard, L., & Roux, J.C. (2020). Severe offtarget effects following intravenous delivery of AAV9-MECP2 in a female mouse model of Rett syndrome. Neurobiology of Disease, 149, 105235. https://doi.org/10.1016/j.nbd.2020.105235

Methyl-CpG-binding protein 2 mediates overlapping mechanisms across brain disorders

Bach, S., Ryan, N. M., Guasoni, P., Corvin, A. P., El-Nemr, R. A., Khan, D., Sanfeliu, A., & Tropea, D. (2020). Methyl-CpG-binding protein 2 mediates overlapping mechanisms across brain disorders. Scientific Reports, 10(1), 22255. https://doi.org/10.1038/s41598-020-79268-0

Implementing telehealth support to increase physical activity in girls and women with Rett syndrome—ActivRett: protocol for a waitlist randomised controlled trial

Downs, J., Lotan, M., Elefant, C., Leonard, H., Wong, K., Buckley, N., & Stahlhut, M. (2020). Implementing telehealth support to increase physical activity in girls and women with Rett syndrome-ActivRett: protocol for a waitlist randomised controlled trial. BMJ Open, 10(12), e042446. https://doi.org/10.1136/bmjopen-2020-042446

Vagus nerve stimulation paired with tones restores auditory processing in a rat model of Rett syndrome

Adcock K.S., Chandler C., Buell E.P., Solorzano B.R., Loerwald K.W., Borland M.S., & Engineer C.T. (2020). Vagus nerve stimulation paired with tones restores auditory processing in a rat model of Rett syndrome. Brain Stimulation, 13(6), 1494-1503. https://doi.org/10.1016/j.brs.2020.08.006

Deficits in skilled motor and auditory learning in a rat model of Rett syndrome

Adcock, K. S., Blount, A. E., Morrison, R. A., Alvarez-Dieppa, A., Kilgard, M. P., Engineer, C. T., & Hays, S. A. (2020). Deficits in skilled motor and auditory learning in a rat model of Rett syndrome. Journal of Neurodevelopmental Disorders, 12(1), 27. https://doi.org/10.1186/s11689-020-09330-5

Multisystem comorbidities in classic Rett syndrome: a scoping review

Fu, C., Armstrong, D., Marsh, E., Lieberman, D., Motil, K., Witt, R., Standridge, S., Lane, J., Dinkel, T., Jones, M., Hale, K., Suter, B., Glaze, D., Neul, J., Percy, A., & Benke, T. (2020). Multisystem comorbidities in classic Rett syndrome: a scoping review. BMJ Paediatrics Open, 4(1), e000731. https://doi.org/10.1136/bmjpo-2020-000731

Pharmacological read-through of R294X Mecp2 in a novel mouse model of Rett syndrome

Merritt, J., Collins, B., Erickson, K., Dong, H., & Neul, J. (2020). Pharmacological read-through of R294X Mecp2 in a novel mouse model of Rett syndrome. Human Molecular Genetics, 29(15), 2461–2470. https://doi.org/10.1093/hmg/ddaa102

Determinants of quality of life in Rett syndrome: new findings on associations with genotype

Mendoza, J., Downs, J., Wong, K., & Leonard, H. (2021). Determinants of quality of life in Rett syndrome: new findings on associations with genotype. Journal of Medical Genetics, 58(9), 637–644. https://doi.org/10.1136/jmedgenet-2020-107120

Functional network mapping reveals state-dependent response to IGF1 treatment in Rett syndrome

Keogh, C., Pini, G., Gemo, I., Kaufmann, W.E., Tropea, D. (2020). Functional network mapping reveals state-dependent response to IGF1 treatment in Rett syndrome. Brain Sciences, 10(8), 515. https://doi.org/10.3390/brainsci10080515

Development of consensus-based guidelines for managing communication of individuals with Rett syndrome

Townend, G.S., Bartolotta, T.E., Urbanowicz, A., Wandin, H., Curfs, L.M.G. (2020). Development of consensus-based guidelines for managing communication of individuals with Rett syndrome. Augmentative and Alternative Communication, 36(2), 71–81. https://doi.org/10.1080/07434618.2020.1785009

Differential coassembly of α1-GABAARs associated with epileptic encephalopathy

Hannan, S., Affandi, A. H. B., Minere, M., Jones, C., Goh, P., Warnes, G., Popp, B., Trollmann, R., Nizetic, D., & Smart, T. G. (2020). Differential coassembly of α1-GABAARs associated with epileptic encephalopathy. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 40(29), 5518–5530. https://doi.org/10.1523/JNEUROSCI.2748-19.2020

Transcriptome data of temporal and cingulate cortex in the Rett syndrome brain

Aldinger, K. A., Timms, A. E., MacDonald, J. W., McNamara, H. K., Herstein, J. S., Bammler, T. K., Evgrafov, O. V., Knowles, J. A., & Levitt, P. (2020). Transcriptome data of temporal and cingulate cortex in the Rett syndrome brain. Scientific Data, 7(1), 192. https://doi.org/10.1038/s41597-020-0527-2

Vitamin D supplementation rescues aberrant NF-κB pathway activation and partially ameliorates Rett syndrome phenotypes in Mecp2 mutant mice

Ribeiro, M. C., Moore, S. M., Kishi, N., Macklis, J. D., & MacDonald, J. L. (2020). Vitamin D Supplementation Rescues Aberrant NF-κB Pathway Activation and Partially Ameliorates Rett Syndrome Phenotypes in Mecp2 Mutant Mice. eNeuro, 7(3), ENEURO.0167-20.2020. https://doi.org/10.1523/ENEURO.0167-20.2020

Lateralized expression of cortical perineuronal nets during maternal experience is dependent on MECP2

Lau, B. Y. B., Layo, D. E., Emery, B., Everett, M., Kumar, A., Stevenson, P., Reynolds, K. G., Cherosky, A., Bowyer, S. H., Roth, S., Fisher, D. G., McCord, R. P., & Krishnan, K. (2020). Lateralized expression of cortical perineuronal nets during maternal experience is dependent on MECP2. eNeuro, 7(3), ENEURO.0500-19.2020. https://doi.org/10.1523/ENEURO.0500-19.2020

Differential brain region-specific expression of MeCP2 and BDNF in Rett Syndrome patients: a distinct grey-white matter variation

Pejhan, S., Siu, V. M., Ang, L. C., Del Bigio, M. R., & Rastegar, M. (2020). Differential brain region-specific expression of MeCP2 and BDNF in Rett Syndrome patients: a distinct grey-white matter variation. Neuropathology and Applied Neurobiology, 46(7), 735–750. https://doi.org/10.1111/nan.12619

AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment

Lammert, C. R., Frost, E. L., Bellinger, C. E., Bolte, A. C., McKee, C. A., Hurt, M. E., Paysour, M. J., Ennerfelt, H. E., & Lukens, J. R. (2020). AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature, 580(7805), 647–652. https://doi.org/10.1038/s41586-020-2174-3

Maternal Experience-Dependent Cortical Plasticity in mice Is Circuit- and Stimulus-Specific and Requires MECP2

Billy Y.B. Lau, Keerthi Krishnan, Z. Josh Huang, Stephen D. Shea (2020). Maternal experience-dependent cortical plasticity in mice Is circuit- and stimulus-specific and requires MECP2. Journal of Neuroscience, 40(7), 1514-1526. https://doi.org/10.1523/JNEUROSCI.1964-19.2019

Widespread organ tolerance to Xist loss and X reactivation except under chronic stress in the gut

Yang, L., Yildirim, E., Kirby, J., Press, W., & Lee, J.T. (2020). Widespread organ tolerance to Xist loss and X reactivation except under chronic stress in the gut. Proceedings of the National Academy of Sciences, 117(8), 4262-4272. https://doi.org/10.1073/pnas.191720311

Special education supports and services for Rett syndrome: parent perceptions and satisfaction

Larriba-Quest, K., Byiers, B. J., Beisang, A., Merbler, A. M., & Symons, F. J. (2020). Special education supports and services for Rett syndrome: parent perceptions and satisfaction. Intellectual and Developmental Disabilities, 58(1), 49–64. https://doi.org/10.1352/1934-9556-58.1.49

Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice

Ehinger, Y., Bruyère, J., Panayotis, N., Abada, Y.S., Borloz, E., Matagne, V., Scaramuzzino, C., Vitet, H., Delatour, B., Saidi, L., Villard, L., Saudou, F., & Roux J.C. (2020). Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice. EMBO Molecular Medicine, 12(2), e10889. https://doi.org/10.15252/emmm.201910889

Evidence of altered salivary cytokine concentrations in Rett syndrome and associations with clinical severity

Byiers, B., Merbler, A., Barney, C., Frenn, K., Panoskaltsis-Mortari, A., Ehrhardt, M., Feyma, T., Beisang, A., Symons, F. (2020). Brain, Behavior, & Immunity – Health, 1. https://doi.org/10.1016/j.bbih.2019.100008

ANAVEX®2-73 (blarcamesine), a Sigma-1 receptor agonist, ameliorates neurologic impairments in a mouse model of Rett syndrome

Kaufmann, W., Sprouse, J., Rebowe, N., Hanania, T., Klamer, D., & Missling, C. (2019). ANAVEX® 2-73 (blarcamesine), a Sigma-1 receptor agonist, ameliorates neurologic impairments in a mouse model of Rett syndrome. Pharmacology Biochemistry and Behavior, 187, 172796. https://doi.org/10.1016/j.pbb.2019.172796

Preliminary Evidence That Resting State Heart Rate Variability Predicts Reactivity to Tactile Stimuli in Rett Syndrome.

Merbler, A. M., Byiers, B. J., Hoch, J., Dimian, A. C., Barney, C. C., Feyma, T. J., Beisang, A. A., Bartolomucci, A., & Symons, F. J. (2020). Preliminary Evidence That Resting State Heart Rate Variability Predicts Reactivity to Tactile Stimuli in Rett Syndrome. Journal of child neurology, 35(1), 42–48. https://doi.org/10.1177/0883073819875915

Sensory integration and functional reaching in children with Rett syndrome/Rett-related disorders.

Drobnyk, W., Rocco, K., Davidson, S., Bruce, S., Zhang, F., & Soumerai, S.B. (2019). Sensory integration and functional reaching in children with Rett syndrome/Rett-related disorders. Clinical Medicine Insights. Pediatrics, 13, 1179556519871952. https://doi.org/10.1177/1179556519871952

Genome-wide transcriptomic and proteomic studies of Rett syndrome mouse models identify common signaling pathways and cellular functions as potential therapeutic targets

Krishnaraj, R., Haase, F., Coorey, B., Luca, E. J., Wong, I., Boyling, A., Ellaway, C., Christodoulou, J., & Gold, W. A. (2019). Genome-wide transcriptomic and proteomic studies of Rett syndrome mouse models identify common signaling pathways and cellular functions as potential therapeutic targets. Human Mutation, 40(12), 2184–2196. https://doi.org/10.1002/humu.23887

The role of MeCP2 in learning and memory

Robinson, H. A., & Pozzo-Miller, L. (2019). The role of MeCP2 in learning and memory. Learning & Memory (Cold Spring Harbor, N.Y.), 26(9), 343–350. https://doi.org/10.1101/lm.048876.118

Exosomes regulate neurogenesis and circuit assembly

Sharma, P., Mesci, P., Carromeu, C., McClatchy, D. R., Schiapparelli, L., Yates, J. R., 3rd, Muotri, A. R., & Cline, H. T. (2019). Exosomes regulate neurogenesis and circuit assembly. Proceedings of the National Academy of Sciences of the United States of America, 116(32), 16086–16094. https://doi.org/10.1073/pnas.1902513116

Deep learning of spontaneous arousal fluctuations detects early cholinergic defects across neurodevelopmental mouse models and patients

Artoni, P., Piffer, A., Vinci, V., LeBlanc, J., Nelson, C. A., Hensch, T. K., & Fagiolini, M. (2020). Deep learning of spontaneous arousal fluctuations detects early cholinergic defects across neurodevelopmental mouse models and patients. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23298–23303. https://doi.org/10.1073/pnas.1820847116

DNA methylation contributes to the differential expression levels of Mecp2 in male mice neurons and astrocytes

Liyanage, V. R. B., Olson, C. O., Zachariah, R. M., Davie, J. R., & Rastegar, M. (2019). DNA methylation contributes to the differential expression levels of Mecp2 in male mice neurons and astrocytes. International Journal of Molecular Sciences, 20(8), 1845. https://doi.org/10.3390/ijms20081845

Towards a better diagnosis and treatment of Rett syndrome: a model synaptic disorder

Banerjee, A., Miller, M. T., Li, K., Sur, M., & Kaufmann, W. E. (2019). Towards a better diagnosis and treatment of Rett syndrome: a model synaptic disorder. Brain : A Journal of Neurology, 142(2), 239–248. https://doi.org/10.1093/brain/awy323

Loss of MeCP2 in immature neurons leads to impaired network integration

Sun, Y., Gao, Y., Tidei, J. J., Shen, M., Hoang, J. T., Wagner, D. F., & Zhao, X. (2019). Loss of MeCP2 in immature neurons leads to impaired network integration. Human Molecular Genetics, 28(2), 245–257. https://doi.org/10.1093/hmg/ddy338

Disturbed redox homeostasis and oxidative stress: potential players in the developmental regression in Rett syndrome

Müller M. (2019). Disturbed redox homeostasis and oxidative stress: potential players in the developmental regression in Rett syndrome. Neuroscience and Biobehavioral Reviews, 98, 154–163. https://doi.org/10.1016/j.neubiorev.2018.12.009

Spoken word processing in Rett syndrome: evidence from event-related potentials

Key, A. P., Jones, D., & Peters, S. (2019). Spoken word processing in Rett syndrome: evidence from event-related potentials. International Journal of Developmental Neuroscience : The Official Journal of the International Society for Developmental Neuroscience, 73, 26–31. https://doi.org/10.1016/j.ijdevneu.2019.01.001

MECP2 mutation interrupts nucleolin-mTOR-P70S6K signaling in Rett syndrome patients

Olson, C. O., Pejhan, S., Kroft, D., Sheikholeslami, K., Fuss, D., Buist, M., Ali Sher, A., Del Bigio, M. R., Sztainberg, Y., Siu, V. M., Ang, L. C., Sabourin-Felix, M., Moss, T., & Rastegar, M. (2018). MECP2 mutation interrupts nucleolin-mTOR-P70S6K signaling in Rett syndrome patients. Frontiers in Genetics, 9, 635. https://doi.org/10.3389/fgene.2018.00635

Metabotropic glutamate receptor 7: a new therapeutic target in neurodevelopmental disorders

Fisher, N. M., Seto, M., Lindsley, C. W., & Niswender, C. M. (2018). Metabotropic glutamate receptor 7: a new therapeutic target in neurodevelopmental disorders. Frontiers in Molecular Neuroscience, 11, 387. https://doi.org/10.3389/fnmol.2018.00387

Impaired visual search in children with Rett syndrome

Rose, S. A., Wass, S., Jankowski, J. J., Feldman, J. F., & Djukic, A. (2019). Impaired visual search in children with Rett syndrome. Pediatric Neurology, 92, 26–31. https://doi.org/10.1016/j.pediatrneurol.2018.10.002

Loss of Mecp2 causes atypical synaptic and molecular plasticity of parvalbumin-expressing interneurons reflecting Rett syndrome-like sensorimotor defects

Morello, N., Schina, R., Pilotto, F., Phillips, M., Melani, R., Plicato, O., Pizzorusso, T., Pozzo-Miller, L., & Giustetto, M. (2018). Loss of Mecp2 causes atypical synaptic and molecular plasticity of parvalbumin-expressing interneurons reflecting Rett syndrome-like sensorimotor defects. eNeuro, 5(5), ENEURO.0086-18.2018. https://doi.org/10.1523/ENEURO.0086-18.2018

Total RNA sequencing of Rett syndrome autopsy samples identifies the M4 muscarinic receptor as a novel therapeutic target

Gogliotti, R. G., Fisher, N. M., Stansley, B. J., Jones, C. K., Lindsley, C. W., Conn, P. J., & Niswender, C. M. (2018). Total RNA sequencing of Rett syndrome autopsy samples identifies the M4 muscarinic receptor as a novel therapeutic target. The Journal of Pharmacology and Experimental Therapeutics, 365(2), 291–300. https://doi.org/10.1124/jpet.117.246991

Sleep disturbances in Rett syndrome: impact and management including use of sleep hygiene practices

Boban, S., Leonard, H., Wong, K., Wilson, A., & Downs, J. (2018). Sleep disturbances in Rett syndrome: impact and management including use of sleep hygiene practices. American Journal of Medical Genetics. Part A, 176(7), 1569–1577. https://doi.org/10.1002/ajmg.a.38829

The feasibility of using actigraphy to characterize sleep in Rett syndrome

Merbler, A. M., Byiers, B. J., Garcia, J. J., Feyma, T. J., & Symons, F. J. (2018). The feasibility of using actigraphy to characterize sleep in Rett syndrome. Journal of Neurodevelopmental Disorders, 10(1), 8. https://doi.org/10.1186/s11689-018-9227-z

Placebo-controlled crossover assessment of mecasermin for the treatment of Rett syndrome

O’Leary, H. M., Kaufmann, W. E., Barnes, K. V., Rakesh, K., Kapur, K., Tarquinio, D. C., Cantwell, N. G., Roche, K. J., Rose, S. A., Walco, A. C., Bruck, N. M., Bazin, G. A., Holm, I. A., Alexander, M. E., Swanson, L. C., Baczewski, L. M., Poon, C., Mayor Torres, J. M., Nelson, C. A., 3rd, & Sahin, M. (2018). Placebo-controlled crossover assessment of mecasermin for the treatment of Rett syndrome. Annals of Clinical and Translational Neurology, 5(3), 323–332. https://doi.org/10.1002/acn3.533

Environmental enrichment intervention for Rett syndrome: an individually randomised stepped wedge trial

Downs, J., Rodger, J., Li, C., Tan, X., Hu, N., Wong, K., de Klerk, N., & Leonard, H. (2018). Environmental enrichment intervention for Rett syndrome: an individually randomised stepped wedge trial. Orphanet Journal of Rare Diseases, 13(1), 3. https://doi.org/10.1186/s13023-017-0752-8

Adapting the mullen scales of early learning for a standardized measure of development in children with Rett syndrome

Clarkson, T., LeBlanc, J., DeGregorio, G., Vogel-Farley, V., Barnes, K., Kaufmann, W. E., & Nelson, C. A. (2017). Adapting the mullen scales of early learning for a standardized measure of development in children with Rett syndrome. Intellectual and Developmental Disabilities, 55(6), 419–431. https://doi.org/10.1352/1934-9556-55.6.419

Distinguishing response to names in Rett and MECP2 Duplication syndrome: An ERP study of auditory social information processing

Peters, S. U., Katzenstein, A., Jones, D., & Key, A. P. (2017). Distinguishing response to names in Rett and MECP2 Duplication syndrome: An ERP study of auditory social information processing. Brain Research, 1675, 71–77. https://doi.org/10.1016/j.brainres.2017.08.028

Genetic reduction or negative modulation of mGlu7 does not impact anxiety and fear learning phenotypes in a mouse model of MECP2 duplication syndrome

Fisher, N. M., Gogliotti, R. G., Vermudez, S. A. D., Stansley, B. J., Conn, P. J., & Niswender, C. M. (2018). Genetic reduction or negative modulation of mGlu7 does not impact anxiety and fear learning phenotypes in a mouse model of MECP2 duplication syndrome. ACS Chemical Neuroscience, 9(9), 2210–2217. https://doi.org/10.1021/acschemneuro.7b00414

Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome

Johnson, B. S., Zhao, Y. T., Fasolino, M., Lamonica, J. M., Kim, Y. J., Georgakilas, G., Wood, K. H., Bu, D., Cui, Y., Goffin, D., Vahedi, G., Kim, T. H., & Zhou, Z. (2017). Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nature Medicine, 23(10), 1203–1214. https://doi.org/10.1038/nm.4406

mGlu7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome

Gogliotti, R. G., Senter, R. K., Fisher, N. M., Adams, J., Zamorano, R., Walker, A. G., Blobaum, A. L., Engers, D. W., Hopkins, C. R., Daniels, J. S., Jones, C. K., Lindsley, C. W., Xiang, Z., Conn, P. J., & Niswender, C. M. (2017). mGlu7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Science Translational Medicine, 9(403), eaai7459. https://doi.org/10.1126/scitranslmed.aai7459

EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice

Xu, X., & Pozzo-Miller, L. (2017). EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice. The Journal of Physiology, 595(16), 5699–5712. https://doi.org/10.1113/JP274450

A double-blind, randomized, placebo-controlled clinical study of trofinetide in the treatment of Rett syndrome

Glaze, D. G., Neul, J. L., Percy, A., Feyma, T., Beisang, A., Yaroshinsky, A., Stoms, G., Zuchero, D., Horrigan, J., Glass, L., & Jones, N. E. (2017). A double-blind, randomized, placebo-controlled clinical study of trofinetide in the treatment of Rett syndrome. Pediatric Neurology, 76, 37–46. https://doi.org/10.1016/j.pediatrneurol.2017.07.002

Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders

Engineer, C.T., Hays, S.A. & Kilgard, M.P. (2017). Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 9, 20. https://doi.org/10.1186/s11689-017-9203-z

A small-molecule TrkB ligand restores hippocampal synaptic plasticity and object location memory in Rett syndrome mice

Li, W., Bellot-Saez, A., Phillips, M. L., Yang, T., Longo, F. M., & Pozzo-Miller, L. (2017). A small-molecule TrkB ligand restores hippocampal synaptic plasticity and object location memory in Rett syndrome mice. Disease Models & Mechanisms, 10(7), 837–845. https://doi.org/10.1242/dmm.029959

Defining hand stereotypies in Rett syndrome: A movement disorders perspective

Dy, M. E., Waugh, J. L., Sharma, N., O’Leary, H., Kapur, K., D’Gama, A. M., Sahin, M., Urion, D. K., & Kaufmann, W. E. (2017). Defining hand stereotypies in Rett syndrome: A movement disorders perspective. Pediatric Neurology, 75, 91–95. https://doi.org/10.1016/j.pediatrneurol.2017.05.025

Quantification of walking-based physical activity and sedentary time in individuals with Rett syndrome

Downs, J., Leonard, H., Wong, K., Newton, N., & Hill, K. (2017). Quantification of walking-based physical activity and sedentary time in individuals with Rett syndrome. Developmental Medicine and Child Neurology, 59(6), 605–611. https://doi.org/10.1111/dmcn.13398

Zoledronic acid improves bone histomorphometry in a murine model of Rett syndrome

Shapiro, J. R., Boskey, A. L., Doty, S. B., Lukashova, L., & Blue, M. E. (2017). Zoledronic acid improves bone histomorphometry in a murine model of Rett syndrome. Bone, 99, 1–7. https://doi.org/10.1016/j.bone.2017.03.040

RettBASE: Rett syndrome database update

Krishnaraj, R., Ho, G., & Christodoulou, J. (2017). RettBASE: Rett syndrome database update. Human Mutation, 38(8), 922–931. https://doi.org/10.1002/humu.23263

Scoliosis in Rett syndrome: progression, comorbidities, and predictors

Killian, J. T., Lane, J. B., Lee, H. S., Skinner, S. A., Kaufmann, W. E., Glaze, D. G., Neul, J. L., & Percy, A. K. (2017). Scoliosis in Rett syndrome: progression, comorbidities, and predictors. Pediatric Neurology, 70, 20–25. https://doi.org/10.1016/j.pediatrneurol.2017.01.032

Sustained attention in the face of distractors: a study of children with Rett syndrome

Rose, S. A., Wass, S., Jankowski, J. J., Feldman, J. F., & Djukic, A. (2017). Sustained attention in the face of distractors: a study of children with Rett syndrome. Neuropsychology, 31(4), 403–410. https://doi.org/10.1037/neu0000369

Autonomic breathing abnormalities in Rett syndrome: caregiver perspectives in an international database study

Mackay, J., Downs, J., Wong, K., Heyworth, J., Epstein, A., & Leonard, H. (2017). Autonomic breathing abnormalities in Rett syndrome: caregiver perspectives in an international database study. Journal of Neurodevelopmental Disorders, 9, 15. https://doi.org/10.1186/s11689-017-9196-7

Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes

Lamonica, J. M., Kwon, D. Y., Goffin, D., Fenik, P., Johnson, B. S., Cui, Y., Guo, H., Veasey, S., & Zhou, Z. (2017). Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. The Journal of Clinical Investigation, 127(5), 1889–1904. https://doi.org/10.1172/JCI90967

Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice

Cronk, J. C., Herz, J., Kim, T. S., Louveau, A., Moser, E. K., Sharma, A. K., Smirnov, I., Tung, K. S., Braciale, T. J., & Kipnis, J. (2017). Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice. JCI Insight, 2(2), e88257. https://doi.org/10.1172/jci.insight.88257

MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice

Krishnan, K., Lau, B. Y., Ewall, G., Huang, Z. J., & Shea, S. D. (2017). MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice. Nature Communications, 8, 14077. https://doi.org/10.1038/ncomms14077

NIH-Funded Natural History Study

Data from the Rett Syndrome Natural History Study (NHS) contributed directly to these publications. This exclusive database continues to be an invaluable resource for researchers.

Top caregiver concerns in Rett syndrome and related disorders: data from the US natural history study

Neul, J. L., Benke, T. A., Marsh, E. D., Suter, B., Silveira, L., Fu, C., Peters, S. U., Percy, A. K., & Rett syndrome Natural History Study Group (2023). Top caregiver concerns in Rett syndrome and related disorders: data from the US natural history study. Journal of Neurodevelopmental Disorders, 15(1), 33. https://doi.org/10.1186/s11689-023-09502-z

Anxiety-like behavior and anxiolytic treatment in the Rett syndrome natural history study

Buchanan, C.B., Stallworth, J.L., Joy, A.E. et al. (2022). Anxiety-like behavior and anxiolytic treatment in the Rett syndrome natural history study. Journal of Neurodevelopmental Disorders, 14(31). https://doi.org/10.1186/s11689-022-09432-2

Anthropometric measures correspond with functional motor outcomes infemales with Rett syndrome

Motil, K. J., Geerts, S., Annese, F., Neul, J. L., Benke, T., Marsh, E., Lieberman, D., Skinner, S. A., Glaze, D. G., Heydemann, P., Beisang, A., Standridge, S., Ryther, R., Lane, J. B., Edwards, L., & Percy, A. K. (2022). Anthropometric measures correspond with functional motor outcomes infemales with Rett syndrome. The Journal of Pediatrics, 244, 169–177. https://doi.org/10.1016/j.jpeds.2022.01.009

Multisite study of evoked potentials in Rett syndrome

Saby, J. N., Benke, T. A., Peters, S. U., Standridge, S. M., Matsuzaki, J., Cutri-French, C., Swanson, L. C., Lieberman, D. N., Key, A. P., Percy, A. K., Neul, J. L., Nelson, C. A., Roberts, T. P. L., & Marsh, E. D. (2021). Multisite study of evoked potentials in Rett syndrome. Annals of Neurology, 89(4), 790–802. https://doi.org/10.1002/ana.26029

Phenotypic features in MECP2 duplication syndrome: Effects of age

Peters, S. U., Fu, C., Marsh, E. D., Benke, T. A., Suter, B., Skinner, S. A., Lieberman, D. N., Standridge, S., Jones, M., Beisang, A., Feyma, T., Heydeman, P., Ryther, R., Glaze, D. G., Percy, A. K., & Neul, J. L. (2021). Phenotypic features in MECP2 duplication syndrome: Effects of age. American Journal of Medical Genetics. Part A, 185(2), 362–369. https://doi.org/10.1002/ajmg.a.61956

A psychometric evaluation of the motor-behavioral assessment scale for use as an outcome Measure in Rett syndrome clinical trials

Raspa, M., Bann, C.M., Gwaltney, A., Benke, T.A., Fu, C., Glaze, D.G., Haas, R., Heydemann, P., Jones, M., Kaufmann, W.E., Lieberman, D., Marsh, E., Peters, S., Ryther, R., Standridge, S., Skinner, S.A., Percy, A.K., Neul, J.L.. (2020). American Journal on Intellectual and Developmental Disabilities, 125(6), 493-509. https://doi.org/10.1352/1944-7558-125.6.493

Multisystem comorbidities in classic Rett syndrome: a scoping review

Fu, C., Armstrong, D., Marsh, E., Lieberman, D., Motil, K., Witt, R., Standridge, S., Lane, J., Dinkel, T., Jones, M., Hale, K., Suter, B., Glaze, D., Neul, J., Percy, A., & Benke, T. (2020). Multisystem comorbidities in classic Rett syndrome: a scoping review. BMJ Paediatrics Open, 4(1), e000731. https://doi.org/10.1136/bmjpo-2020-000731

Consensus guidelines on managing Rett syndrome across the lifespan

Fu, C., Armstrong, D., Marsh, E., Lieberman, D., Motil, K., Witt, R., Standridge, S., Nues, P., Lane, J., Dinkel, T., Coenraads, M., von Hehn, J., Jones, M., Hale, K., Suter, B., Glaze, D., Neul, J., Percy, A., & Benke, T. (2020). Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatrics Open, 4(1), e000717. https://doi.org/10.1136/bmjpo-2020-000717

Cortisol profiles and clinical severity in MECP2 duplication syndrome

Peters, S. U., Fu, C., Neul, J. L., & Granger, D. A. (2020). Cortisol profiles and clinical severity in MECP2 duplication syndrome. Journal of Neurodevelopmental Disorders, 12(1), 19. https://doi.org/10.1186/s11689-020-09322-5

Comparison of core features in four Developmental Encephalopathies in the Rett Natural History Study

Cutri-French, C., Armstrong, D., Saby, J., Gorman, C., Lane, J., Fu, C., Peters, S. U., Percy, A., Neul, J. L., & Marsh, E. D. (2020). Comparison of Core Features in Four Developmental Encephalopathies in the Rett Natural History Study. Annals of Neurology, 88(2), 396–406. https://doi.org/10.1002/ana.25797

Metabolic signatures differentiate Rett syndrome from unaffected siblings

Neul, J.L., Skinner, S.A., Annese, F., Lane, J., Heydemann, P., Jones, M., Kaufmann, W.E., Glaze, D.G., Percy, A.K. (2020) Metabolic signatures differentiate Rett syndrome from unaffected siblings. Frontiers in Integrative Neuroscience, 14(7). https://doi.org/10.3389/fnint.2020.00007

Biliary tract disease in girls and young women with Rett syndrome

Motil, K. J., Lane, J. B., Barrish, J. O., Annese, F., Geerts, S., McNair, L., Skinner, S. A., Neul, J. L., Glaze, D. G., & Percy, A. K. (2019). Biliary tract disease in girls and young women with Rett syndrome. Journal of Pediatric Gastroenterology and Nutrition, 68(6), 799–805. https://doi.org/10.1097/MPG.0000000000002273

Hand stereotypies: Lessons from the Rett Syndrome Natural History Study

Stallworth, J. L., Dy, M. E., Buchanan, C. B., Chen, C. F., Scott, A. E., Glaze, D. G., Lane, J. B., Lieberman, D. N., Oberman, L. M., Skinner, S. A., Tierney, A. E., Cutter, G. R., Percy, A. K., Neul, J. L., & Kaufmann, W. E. (2019). Hand stereotypies: Lessons from the Rett Syndrome Natural History Study. Neurology, 92(22), e2594–e2603. https://doi.org/10.1212/WNL.0000000000007560

Severity assessment in CDKL5 deficiency disorder

Demarest, S., Pestana-Knight, E. M., Olson, H. E., Downs, J., Marsh, E. D., Kaufmann, W. E., Partridge, C. A., Leonard, H., Gwadry-Sridhar, F., Frame, K. E., Cross, J. H., Chin, R. F. M., Parikh, S., Panzer, A., Weisenberg, J., Utley, K., Jaksha, A., Amin, S., Khwaja, O., Devinsky, O., Benke, T. A. (2019). Severity assessment in CDKL5 deficiency disorder. Pediatric Neurology, 97, 38–42. https://doi.org/10.1016/j.pediatrneurol.2019.03.017

Characterizing the phenotypic effect of Xq28 duplication size in MECP2 duplication syndrome

Peters, S. U., Fu, C., Suter, B., Marsh, E., Benke, T. A., Skinner, S. A., Lieberman, D. N., Standridge, S., Jones, M., Beisang, A., Feyma, T., Heydeman, P., Ryther, R., Kaufmann, W. E., Glaze, D. G., Neul, J. L., & Percy, A. K. (2019). Characterizing the phenotypic effect of Xq28 duplication size in MECP2 duplication syndrome. Clinical Genetics, 95(5), 575–581. https://doi.org/10.1111/cge.13521

The array of clinical phenotypes of males with mutations in Methyl-CpG binding protein 2

Neul, J. L., Benke, T. A., Marsh, E. D., Skinner, S. A., Merritt, J., Lieberman, D. N., Standridge, S., Feyma, T., Heydemann, P., Peters, S., Ryther, R., Jones, M., Suter, B., Kaufmann, W. E., Glaze, D. G., & Percy, A. K. (2019). The array of clinical phenotypes of males with mutations in Methyl-CpG binding protein 2. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics : The Official Publication of the International Society of Psychiatric Genetics, 180(1), 55–67. https://doi.org/10.1002/ajmg.b.32707

Behavioral profiles in Rett syndrome: Data from the Natural History Study

Buchanan, C. B., Stallworth, J. L., Scott, A. E., Glaze, D. G., Lane, J. B., Skinner, S. A., Tierney, A. E., Percy, A. K., Neul, J. L., & Kaufmann, W. E. (2019). Behavioral profiles in Rett syndrome: Data from the natural history study. Brain & Development, 41(2), 123–134. https://doi.org/10.1016/j.braindev.2018.08.008

The course of awake breathing disturbances across the lifespan in Rett syndrome

Tarquinio, D. C., Hou, W., Neul, J. L., Berkmen, G. K., Drummond, J., Aronoff, E., Harris, J., Lane, J. B., Kaufmann, W. E., Motil, K. J., Glaze, D. G., Skinner, S. A., & Percy, A. K. (2018). The course of awake breathing disturbances across the lifespan in Rett syndrome. Brain & Development, 40(7), 515–529. https://doi.org/10.1016/j.braindev.2018.03.010

When Rett syndrome is due to genes other than MECP2

Percy, A. K., Lane, J., Annese, F., Warren, H., Skinner, S. A., & Neul, J. L. (2018). When Rett syndrome is due to genes other than MECP2. Translational Science of Rare Diseases, 3(1), 49–53. https://doi.org/10.3233/TRD-180021

Scoliosis in Rett Syndrome: Progression, Comorbidities, and Predictors

Killian, J. T., Lane, J. B., Lee, H. S., Skinner, S. A., Kaufmann, W. E., Glaze, D. G., Neul, J. L., & Percy, A. K. (2017). Scoliosis in Rett Syndrome: Progression, Comorbidities, and Predictors. Pediatric Neurology, 70, 20–25. https://doi.org/10.1016/j.pediatrneurol.2017.01.032

Assessment of caregiver inventory for Rett syndrome

Lane, J. B., Salter, A. R., Jones, N. E., Cutter, G., Horrigan, J., Skinner, S. A., Kaufmann, W. E., Glaze, D. G., Neul, J. L., & Percy, A. K. (2017). Assessment of caregiver inventory for Rett syndrome. Journal of Autism and Developmental Disorders, 47(4), 1102–1112. https://doi.org/10.1007/s10803-017-3034-3

Longitudinal course of epilepsy in Rett syndrome and related disorders

Tarquinio, D. C., Hou, W., Berg, A., Kaufmann, W. E., Lane, J. B., Skinner, S. A., Motil, K. J., Neul, J. L., Percy, A. K., & Glaze, D. G. (2017). Longitudinal course of epilepsy in Rett syndrome and related disorders. Brain : A Journal of Neurology, 140(2), 306–318. https://doi.org/10.1093/brain/aww302

From function to phenotype: impaired DNA binding and clustering correlates with clinical severity in males with missense mutations in MECP2

Sheikh, T. I., Ausió, J., Faghfoury, H., Silver, J., Lane, J. B., Eubanks, J. H., MacLeod, P., Percy, A. K., & Vincent, J. B. (2016). From function to phenotype: impaired DNA binding and clustering correlates with clinical severity in males with missense mutations in MECP2. Scientific Reports, 6, 38590. https://doi.org/10.1038/srep38590

Loss of MeCP2 causes urological dysfunction and contributes to death by kidney failure in mouse models of Rett syndrome

Ward, C. S., Huang, T. W., Herrera, J. A., Samaco, R. C., Pitcher, M. R., Herron, A., Skinner, S. A., Kaufmann, W. E., Glaze, D. G., Percy, A. K., & Neul, J. L. (2016). Loss of MeCP2 causes urological dysfunction and contributes to death by kidney failure in mouse models of Rett syndrome. PloS One, 11(11), e0165550. https://doi.org/10.1371/journal.pone.0165550

Progress in Rett syndrome: from discovery to clinical trials

Percy A. K. (2016). Progress in Rett Syndrome: from discovery to clinical trials. Fortschritte beim Rett-Syndrom – von der Entdeckung zu klinischen Studien. Wiener medizinische Wochenschrift (1946), 166(11-12), 325–332. https://doi.org/10.1007/s10354-016-0491-9

Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2

Sajan, S. A., Jhangiani, S. N., Muzny, D. M., Gibbs, R. A., Lupski, J. R., Glaze, D. G., Kaufmann, W. E., Skinner, S. A., Annese, F., Friez, M. J., Lane, J., Percy, A. K., & Neul, J. L. (2017). Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 19(1), 13–19. https://doi.org/10.1038/gim.2016.42

Caretaker quality of life in Rett syndrome: disorder features and psychological predictors

Killian, J. T., Jr, Lane, J. B., Lee, H. S., Pelham, J. H., Skinner, S. A., Kaufmann, W. E., Glaze, D. G., Neul, J. L., & Percy, A. K. (2016). Caretaker quality of life in Rett syndrome: disorder features and psychological predictors. Pediatric Neurology, 58, 67–74. https://doi.org/10.1016/j.pediatrneurol.2015.12.021

Detecting autonomic response to pain in Rett syndrome

O’Leary, H. M., Marschik, P. B., Khwaja, O. S., Ho, E., Barnes, K. V., Clarkson, T. W., Bruck, N. M., & Kaufmann, W. E. (2017). Detecting autonomic response to pain in Rett syndrome. Developmental Neurorehabilitation, 20(2), 108–114. https://doi.org/10.3109/17518423.2015.1087437

The changing face of survival in Rett syndrome and MECP2-related disorders

Tarquinio, D. C., Hou, W., Neul, J. L., Kaufmann, W. E., Glaze, D. G., Motil, K. J., Skinner, S. A., Lee, H. S., & Percy, A. K. (2015). The changing face of survival in Rett syndrome and MECP2-related disorders. Pediatric Neurology, 53(5), 402–411. https://doi.org/10.1016/j.pediatrneurol.2015.06.003

Improving treatment trial outcomes for Rett syndrome: The development of Rett-specific anchors for the Clinical Global Impression Scale

Neul, J. L., Glaze, D. G., Percy, A. K., Feyma, T., Beisang, A., Dinh, T., Suter, B., Anagnostou, E., Snape, M., Horrigan, J., & Jones, N. E. (2015). Improving treatment trial outcomes for Rett syndrome: The development of Rett-specific anchors for the Clinical Global Impression Scale. Journal of Child Neurology, 30(13), 1743–1748. https://doi.org/10.1177/0883073815579707

Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs

Herrera, J. A., Ward, C. S., Pitcher, M. R., Percy, A. K., Skinner, S., Kaufmann, W. E., Glaze, D. G., Wehrens, X. H., & Neul, J. L. (2015). Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs. Disease Models & Mechanisms, 8(4), 363–371. https://doi.org/10.1242/dmm.020131

Age of diagnosis in Rett syndrome: patterns of recognition among diagnosticians and risk factors for late diagnosis

Tarquinio, D. C., Hou, W., Neul, J. L., Lane, J. B., Barnes, K. V., O’Leary, H. M., Bruck, N. M., Kaufmann, W. E., Motil, K. J., Glaze, D. G., Skinner, S. A., Annese, F., Baggett, L., Barrish, J. O., Geerts, S. P., & Percy, A. K. (2015). Age of diagnosis in Rett syndrome: patterns of recognition among diagnosticians and risk factors for late diagnosis. Pediatric Neurology, 52(6), 585–91.e2. https://doi.org/10.1016/j.pediatrneurol.2015.02.007

Pubertal development in Rett syndrome deviates from typical females

Killian, J. T., Lane, J. B., Cutter, G. R., Skinner, S. A., Kaufmann, W. E., Tarquinio, D. C., Glaze, D. G., Motil, K. J., Neul, J. L., & Percy, A. K. (2014). Pubertal development in Rett syndrome deviates from typical females. Pediatric Neurology, 51(6), 769–775. https://doi.org/10.1016/j.pediatrneurol.2014.08.013

Developmental delay in Rett syndrome: data from the natural history study

Neul, J. L., Lane, J. B., Lee, H. S., Geerts, S., Barrish, J. O., Annese, F., Baggett, L. M., Barnes, K., Skinner, S. A., Motil, K. J., Glaze, D. G., Kaufmann, W. E., & Percy, A. K. (2014). Developmental delay in Rett syndrome: data from the natural history study. Journal of Neurodevelopmental Disorders, 6(1), 20. https://doi.org/10.1186/1866-1955-6-20

Development of a genomic DNA reference material panel for Rett syndrome (MECP2-Related Disorders) genetic testing

Kalman, L. V., Tarleton, J. C., Percy, A. K., Aradhya, S., Bale, S., Barker, S. D., Bayrak-Toydemir, P., Bridges, C., Buller-Burckle, A. M., Das, S., Iyer, R. K., Vo, T. D., Zvereff, V. V., & Toji, L. H. (2014). Development of a genomic DNA reference material panel for Rett syndrome (MECP2-related disorders) genetic testing. The Journal of Molecular Diagnostics: JMD, 16(2), 273–279. https://doi.org/10.1016/j.jmoldx.2013.11.004

Rett syndrome: from recognition to diagnosis to intervention

Percy A. K. (2008). Rett syndrome: from recognition to diagnosis to intervention. Expert Review of Endocrinology & Metabolism, 3(3), 327–336. https://doi.org/10.1586/17446651.3.3.327

Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome

Cuddapah, V. A., Pillai, R. B., Shekar, K. V., Lane, J. B., Motil, K. J., Skinner, S. A., Tarquinio, D. C., Glaze, D. G., McGwin, G., Kaufmann, W. E., Percy, A. K., Neul, J. L., & Olsen, M. L. (2014). Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. Journal of Medical Genetics, 51(3), 152–158. https://doi.org/10.1136/jmedgenet-2013-102113

The American history of Rett syndrome

Percy A. (2014). The American history of Rett syndrome. Pediatric Neurology, 50(1), 1–3. https://doi.org/10.1016/j.pediatrneurol.2013.08.018

Detection of rarely identified multiple mutations in MECP2 gene do not contribute to enhanced severity in Rett syndrome

Chapleau, C. A., Lane, J., Kirwin, S. M., Schanen, C., Vinette, K. M., Stubbolo, D., MacLeod, P., Glaze, D. G., Motil, K. J., Neul, J. L., Skinner, S. A., Kaufmann, W. E., & Percy, A. K. (2013). Detection of rarely identified multiple mutations in MECP2 gene do not contribute to enhanced severity in Rett syndrome. American Journal of Medical Genetics. Part A, 161A(7), 1638–1646. https://doi.org/10.1002/ajmg.a.35979

Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome

Motil, K. J., Caeg, E., Barrish, J. O., Geerts, S., Lane, J. B., Percy, A. K., Annese, F., McNair, L., Skinner, S. A., Lee, H. S., Neul, J. L., & Glaze, D. G. (2012). Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. Journal of Pediatric Gastroenterology and nutrition, 55(3), 292–298. https://doi.org/10.1097/MPG.0b013e31824b6159

Growth failure and outcome in Rett syndrome: specific growth references

Tarquinio, D. C., Motil, K. J., Hou, W., Lee, H. S., Glaze, D. G., Skinner, S. A., Neul, J. L., Annese, F., McNair, L., Barrish, J. O., Geerts, S. P., Lane, J. B., & Percy, A. K. (2012). Growth failure and outcome in Rett syndrome: specific growth references. Neurology, 79(16), 1653–1661. https://doi.org/10.1212/WNL.0b013e31826e9a70

Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: implication for therapy in Rett syndrome

McCauley, M. D., Wang, T., Mike, E., Herrera, J., Beavers, D. L., Huang, T. W., Ward, C. S., Skinner, S., Percy, A. K., Glaze, D. G., Wehrens, X. H., & Neul, J. L. (2011). Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: implication for therapy in Rett syndrome. Science Translational Medicine, 3(113), 113ra125. https://doi.org/10.1126/scitranslmed.3002982

Vitamin D deficiency is prevalent in girls and women with Rett syndrome

Motil, K. J., Barrish, J. O., Lane, J., Geerts, S. P., Annese, F., McNair, L., Percy, A. K., Skinner, S. A., Neul, J. L., & Glaze, D. G. (2011). Vitamin D deficiency is prevalent in girls and women with Rett syndrome. Journal of Pediatric Gastroenterology and Nutrition, 53(5), 569–574. https://doi.org/10.1097/MPG.0b013e3182267a66

Clinical severity and quality of life in children and adolescents with Rett syndrome

Lane, J. B., Lee, H. S., Smith, L. W., Cheng, P., Percy, A. K., Glaze, D. G., Neul, J. L., Motil, K. J., Barrish, J. O., Skinner, S. A., Annese, F., McNair, L., Graham, J., Khwaja, O., Barnes, K., & Krischer, J. P. (2011). Clinical severity and quality of life in children and adolescents with Rett syndrome. Neurology, 77(20), 1812–1818. https://doi.org/10.1212/WNL.0b013e3182377dd2

Rett syndrome: exploring the autism link

Percy A. K. (2011). Rett syndrome: exploring the autism link. Archives of Neurology, 68(8), 985–989. https://doi.org/10.1001/archneurol.2011.149

Complexities of Rett syndrome and MeCP2

Samaco, R. C., & Neul, J. L. (2011). Complexities of Rett syndrome and MeCP2. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(22), 7951–7959. https://doi.org/10.1523/JNEUROSCI.0169-11.2011

Rett syndrome: revised diagnostic criteria and nomenclature

Neul, J. L., Kaufmann, W. E., Glaze, D. G., Christodoulou, J., Clarke, A. J., Bahi-Buisson, N., Leonard, H., Bailey, M. E., Schanen, N. C., Zappella, M., Renieri, A., Huppke, P., Percy, A. K., & RettSearch Consortium (2010). Rett syndrome: revised diagnostic criteria and nomenclature. Annals of Neurology, 68(6), 944–950. https://doi.org/10.1002/ana.22124

Rett syndrome diagnostic criteria: Lessons from the Natural History Study

Percy, A. K., Neul, J. L., Glaze, D. G., Motil, K. J., Skinner, S. A., Khwaja, O., Lee, H. S., Lane, J. B., Barrish, J. O., Annese, F., McNair, L., Graham, J., & Barnes, K. (2010). Rett syndrome diagnostic criteria: lessons from the Natural History Study. Annals of Neurology, 68(6), 951–955. https://doi.org/10.1002/ana.22154

Profiling scoliosis in Rett syndrome

Percy, A. K., Lee, H. S., Neul, J. L., Lane, J. B., Skinner, S. A., Geerts, S. P., Annese, F., Graham, J., McNair, L., Motil, K. J., Barrish, J. O., & Glaze, D. G. (2010). Profiling scoliosis in Rett syndrome. Pediatric Research, 67(4), 435–439. https://doi.org/10.1203/PDR.0b013e3181d0187f

Epilepsy and the natural history of Rett syndrome

Glaze, D. G., Percy, A. K., Skinner, S., Motil, K. J., Neul, J. L., Barrish, J. O., Lane, J. B., Geerts, S. P., Annese, F., Graham, J., McNair, L., & Lee, H. S. (2010). Epilepsy and the natural history of Rett syndrome. Neurology, 74(11), 909–912. https://doi.org/10.1212/WNL.0b013e3181d6b852

Longevity in Rett syndrome: analysis of the North American Database

Kirby, R. S., Lane, J. B., Childers, J., Skinner, S. A., Annese, F., Barrish, J. O., Glaze, D. G., Macleod, P., & Percy, A. K. (2010). Longevity in Rett syndrome: analysis of the North American Database. The Journal of Pediatrics, 156(1), 135–138.e1. https://doi.org/10.1016/j.jpeds.2009.07.015

Gastrostomy placement improves height and weight gain in girls with Rett syndrome

Motil, K. J., Morrissey, M., Caeg, E., Barrish, J. O., & Glaze, D. G. (2009). Gastrostomy placement improves height and weight gain in girls with Rett syndrome. Journal of Pediatric Gastroenterology and Nutrition, 49(2), 237–242. https://doi.org/10.1097/MPG.0b013e31818f61fd

Rett syndrome: North American database

Percy, A. K., Lane, J. B., Childers, J., Skinner, S., Annese, F., Barrish, J., Caeg, E., Glaze, D. G., & MacLeod, P. (2007). Rett syndrome: North American database. Journal of Child Neurology, 22(12), 1338–1341. https://doi.org/10.1177/0883073807308715

Subscribe

IRSF Research Quarterly Newsletter

Check out past editions of the IRSF Research Newsletter containing Rett research news, important announcements, new publications, and more.