UNITY * STRENGTH * HOPE
JUNE 24-26 • EAGLEWOOD RESORT, ILLINOIS • 2016
RETT SYNDROME, MECP2 DUPLICATION, CDKL5 DISORDER, FOXG1 DISORDER
FAMILY CONFERENCE

Nothing replaces the experience
of meeting face-to-face
Genetics 101: What do MECP2, CDKL5 and FOXG1 have to do with one another?
June 24, 2016
Eaglewood Resort, IL
GOALS FOR TODAY’S TALK

- Introduction to MECP2, CDKL5 and FOXG1
- Basic review of genetics
- Genetic Counseling Issues
- Understanding mutation reports
- Your questions?
Timeline Connecting MECP2, CDKL5 and FOXG1

• 1966 Rett syndrome described by Dr. Rett
• 1983 Hagberg’s seminal article in English
• 1993 Rett variants (atypical forms) described
• 1999 MECP2 associated with Rett syndrome
• 2005 CDKL5 associated with early seizure variant of Rett
• 2005 MECP2 duplications reported
• 2008 FOXG1 associated with congenital variant of Rett
Rett-Like Conditions

- CDKL5 – X-linked, early onset seizures
- FOXG1 – 14q12, microcephaly, abnormal corpus callosum, “congenital form”
- TCF4 (Pitt-Hopkins syndrome) – 18q21.2, typical facial features, breathing abnormalities
- MEF2C – 5q14.3
- IQSEC2 – Xp11.2
- WDR45 – Xp11.23
Next Generation Sequencing (Massively Parallel Sequencing)

• Rapid sequencing of large amounts of DNA code, less expensively
• Large gene panel tests
 - 19 genes associated with Rett/Angelman
• Whole exome sequencing
• Whole genome sequencing
RETT-Like Conditions

Chromosomal locations of the MECP2, CDKL5 and FOXG1 genes

- MECP2: Xq28
- CDKL5: Xp22.13
- FOXG1: 14q12
Schematic of CDKL5 and Specific Domains

- ATP-binding site (aa 14–47)
- ST kinase active site (aa 127–144)
- T-X-Y conserved motif (aa 169–171)
- Putative nuclear localization signals (aa 312–315 and aa 784–789)
- Putative nuclear export signals (aa 836–845)
- Signal peptidase I serine active site (aa 971–978)

Catalytic domain
Figure 2. Schematic gene structure of FOXG1. The 3 main functional domains are shown, namely, the DNA binding fork-head domain (FHD), the Groucho binding domain (GBD), and the JARID1B binding domain (JBD). Twenty reported pathogenic variants and their positions are indicated.18
Chromosome to Gene to Protein

Cell
Each chromosome is composed of one large continuous DNA molecule.

Chromosomes

Gene
A gene is a segment of DNA that encodes a protein product.

Protein
A protein is a complex organic compound composed of hundreds or thousands of amino acids.

DNA

Nucleotides
- Adenine
- Thymine
- Guanine
- Cytosine
DNA Alphabet

<table>
<thead>
<tr>
<th>Letter</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adenine</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
</tbody>
</table>

- **A** – adenine
- **T** – thymine
- **C** – cytosine
- **G** – guanine
DNA Code for Amino Acids

<table>
<thead>
<tr>
<th>First Letter</th>
<th>Second Letter</th>
<th>Third Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>TTT</td>
<td>TCA</td>
<td>TCAG</td>
</tr>
<tr>
<td>TTC</td>
<td>TCG</td>
<td>TGG</td>
</tr>
<tr>
<td>TTA</td>
<td>TGC</td>
<td>TGA</td>
</tr>
<tr>
<td>TTA</td>
<td>TGG</td>
<td>TAA</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gln</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>TTT</td>
<td>CTC</td>
<td>CGT</td>
</tr>
<tr>
<td>TTC</td>
<td>CTA</td>
<td>CGC</td>
</tr>
<tr>
<td>TTA</td>
<td>CTG</td>
<td>CGG</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>ATT</td>
<td>ACT</td>
<td>AGT</td>
</tr>
<tr>
<td>ATC</td>
<td>ACC</td>
<td>AGC</td>
</tr>
<tr>
<td>ATA</td>
<td>ACA</td>
<td>ACG</td>
</tr>
<tr>
<td>ATG</td>
<td>AAA</td>
<td>AAG</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>GTT</td>
<td>GTC</td>
<td>GTG</td>
</tr>
<tr>
<td>GTA</td>
<td>GCC</td>
<td>GCG</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gly</td>
</tr>
<tr>
<td>c. (coding) nucleotide number</td>
<td>p. (protein) amino acid number</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>ATG Met</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GTA Val</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GCT Ala</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GGG Gly</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ATG Met</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TTA Leu</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GGG Gly</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CTC Leu</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>AGG Arg</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>GAA Glu</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>GAA Glu</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>AAG Lys</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>TCA Ser</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>GAA Glu</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>GAC Asp</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Terminology

• **Deletions:**
 Deletion exon 3
 Deletion exon 3 and 4
 c.806delG
 c.1154_1185del32
 c.488_489delGG

• **Missense/Nonsense Mutations:**
 p.T158M
 p.R270X
 p.G269fs
Exon 4
c.473C>T
p.T158M

MECP2

<table>
<thead>
<tr>
<th></th>
<th>460</th>
<th>463</th>
<th>466</th>
<th>469</th>
<th>472</th>
<th>475</th>
<th>478</th>
<th>481</th>
<th>484</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GAT</td>
<td>TTT</td>
<td>GAC</td>
<td>TTC</td>
<td>ACG</td>
<td>GTA</td>
<td>ACT</td>
<td>GGG</td>
<td>AGA</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td>T</td>
<td>V</td>
<td>T</td>
<td>G</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>154</td>
<td>155</td>
<td>156</td>
<td>157</td>
<td>158</td>
<td>159</td>
<td>160</td>
<td>161</td>
<td>162</td>
</tr>
</tbody>
</table>

NORMAL

<table>
<thead>
<tr>
<th></th>
<th>460</th>
<th>463</th>
<th>466</th>
<th>469</th>
<th>472</th>
<th>475</th>
<th>478</th>
<th>481</th>
<th>484</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GAT</td>
<td>TTT</td>
<td>GAC</td>
<td>TTC</td>
<td>ATG</td>
<td>GTA</td>
<td>ACT</td>
<td>GGG</td>
<td>AGA</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td>M</td>
<td>V</td>
<td>T</td>
<td>G</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>154</td>
<td>155</td>
<td>156</td>
<td>157</td>
<td>158</td>
<td>159</td>
<td>160</td>
<td>161</td>
<td>162</td>
</tr>
</tbody>
</table>

MUTATION
Missense Mutations

c.11A>C or p.H4P

Missense mutation

Original DNA code for an amino acid sequence.

DNA bases

CATCATCATCATCATCAT

Amino acid

Pro

Replacement of a single nucleotide.

Incorrect amino acid, which may produce a malfunctioning protein.
Nonsense (Stop) Mutations
c.10C>T or p.G4X
CDKL5

Exon 12
c.1675C>T
p.R559X

<table>
<thead>
<tr>
<th></th>
<th>1660</th>
<th>1663</th>
<th>1666</th>
<th>1669</th>
<th>1672</th>
<th>1675</th>
<th>1678</th>
<th>1681</th>
<th>1684</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACG</td>
<td>T</td>
<td>L</td>
<td>D</td>
<td>S</td>
<td>R</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>554</td>
<td>555</td>
<td>556</td>
<td>557</td>
<td>558</td>
<td>559</td>
<td>560</td>
<td>561</td>
<td>562</td>
</tr>
</tbody>
</table>

NORMAL

<table>
<thead>
<tr>
<th></th>
<th>1660</th>
<th>1663</th>
<th>1666</th>
<th>1669</th>
<th>1672</th>
<th>1675</th>
<th>1678</th>
<th>1681</th>
<th>1684</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACG</td>
<td>T</td>
<td>L</td>
<td>D</td>
<td>S</td>
<td>R</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>554</td>
<td>555</td>
<td>556</td>
<td>557</td>
<td>558</td>
<td>560</td>
<td>561</td>
<td>562</td>
<td></td>
</tr>
</tbody>
</table>

MUTATION
Deletion causes a Frameshift
c.11delA or p.H4fs
Insertion causes a Frameshift

c.9_10insA or p.H4fs

Original DNA code for an amino acid sequence.

DNA bases

CATCATCATCATCATCATCAT

Amino acid

His His His His His His

Insertion of a single nucleotide.

CATCATCATCATACATCATCA

Incorrect amino acid sequence, which may produce a malfunctioning protein.
Does Mutation Predict Severity? Sometimes, but Not Always

- Specifics of mutation
- Location of mutation
- Impact of other genes
- X-inactivation (in Rett and CDKL5)
X Inactivation

- Both X chromosomes active
- Maternal X chromosome active
- Paternal X chromosome active

Fertilized egg

Early embryo

Random X chromosome inactivation in each cell

Fixed X chromosome inactivation in all descendant cells

Random X chromosome inactivation

Skewed X chromosome inactivation
Genetic Counseling Issues for Rett Syndrome (And Perhaps CDKL5 and FOXG1)

• Most (>99%) are sporadic:
 – <1% recurrence risk
 – New mutation in sperm or egg
 – Most new mutations occur in the sperm (in Rett)

• MECP2 Duplication:
 - most inherited from carrier mother
 - de novo mutations do occur
X-Linked Inheritance for MECP2 and CDKL5

Son receives Y from father
Daughter receives X from father

Males and females receive an X from mother
Germline Mosaicism

- Rare (<1% of families)
- Occurs in both males and females
- No easy, non-invasive test
- Higher recurrence risk (???%)

UNITY STRENGTH HOPE
JUNE 24-26 • EAGLEWOOD RESORT, ILLINOIS • 2016
RETT SYNDROME, MECP2 DUPLICATION, CDKL5 DISORDER, FOXG1 DISORDER
FAMILY CONFERENCE
Mosaicism

- Normal Cells
- Cells With Genetic Change

Cell Division

Mosaic Tissue
Testing Other Family Members

• Mothers - offer to rule out rare carriers (MECP2 and CDKL5)

• Fathers and brothers - not needed if typically developing

• Sisters – if typically developing, rare to be carriers, but offer prior to reproductive years (MECP2 and CDKL5)
Prenatal Diagnosis

• If mutation known, can be done either by CVS or Amniocentesis
• Individual choice
• Usually only check for known mutation in family
Duplications of MECP2, CDKL5 and FOXG1

- Typically involve other genes
- All associated with developmental and medical problems, but different from mutations in the individual genes
- Implications regarding treatment
Thank You to:

• Rettsyndrome.org
• NIH
• All the patients and families that inspire us and have taught us so much